CHI-SQUARE DISTRIBUTION &

THE ANALYSIS OF FREQUENCIES

Nguyen Quang Vinh - Nguyen Thi Tu Van

- One of the most widely used distributions
- Testing hypothesis where data in form of frequencies: to test differences between proportions
- Most appropriate for use with categorical variables

$N(\mu, \sigma^2)$ transformed to N(0, 1) by:

$$z = \frac{x - \mu}{\sigma}$$

with df = 1,*or* :

$$z^2 = \chi^2_{(1)}$$

follows a χ^2 distribution with df = 2

In general:

follows a χ^2 distribution with df = n

The mathematical form of the χ^2 distribution :

$$f(u) = \frac{1}{\left(\frac{k}{2} - 1\right)!} \frac{1}{2^{k/2}} u^{(k/2) - 1} e^{-(u/2)}, \quad u > 0$$

where e = 2.71828, k = df

APPLICATIONS OF THE χ^2 STATISTIC

- Observed frequencies (OBSERVATION)
 VS.
 - Expected frequencies (HYPOTHESIS)
- (1) Test of goodness-of-fit
 (2) Test of independence
 (3) Test of homogeneity

χ^2 test of goodness-of- fit

- A two-tailed test on p
- For Binomial situation:

 $H_{O}: p = p_{0}$ $H_{A}: p \neq p_{0}$

• For Multinomial situation:

H_O: $p_1 = p_{10}$, $p_2 = p_{20}$, ..., $p_k = p_{k0}$ H_A: at least one of the p_i 's is incorrect

 χ^2 test of goodness-of - fit

Test statistic :

$$\chi_c^2 = \sum \frac{(O-E)^2}{E}$$

df = number of categories - 1

reject H_o if $\chi_c^2 > \chi_{\alpha,df}^2$

Х

χ^2 test of goodness-of- fit

- How well the distribution of sample data conforms to some theorical distribution*
- Small expected frequencies: 5
 - Combining adjacent categories \rightarrow to achieve the suggested minimum.

*Kolmogorov-Smirnov test \rightarrow continuous distributions

χ^2 test of Independence

- Most frequent use of χ^2
- A *single* population, where each member was classified according to 2 criteria:

1st criteria: row 2nd criteria: column

- Contingency table: r rows, c columns
- H_o: 2 criteria of classification are independent
 H_A: 2 criteria of classification are not independent

•
$$df = (r - 1)(c - 1)$$

χ^2 test of Independence Small expected frequencies

• χ^2 test should not be used if any $E_i < 5$

χ^2 test of Homogeneity

To determine whether the *distinct* groups can be viewed as belonging to the *same* population.

χ^2 test of Independence

- row and column totals are not under the control of the investigator
- ? *independent* (the 2 criteria)

χ^2 test of Homogeneity

- either row or column totals may be under the control of the investigator
- ? homogeneous (the samples drawn from the same population)

mathematically equivalent but conceptually different

FISHER'S EXACT TEST

	Treatment	Control	Total	
O+	X	K-x	K	
O-	n-x	(N-K)-(n-x)	N - K	
Total	n	N-n	Ν	

We have a result from a trial as follow:

	Treatment	Control	Total
O+	6	1	7
O-	2 4		6
Total	8	5	13

Listing all possible tables in the sample of size 13, which have:

- □ 7 positive outcomes &
- □ 8 subjects in treatment group.
- We have 6 tables as follow:

	Treatment	Control	Total	
O+	7	0	7	
O-	1	5	6	
Total	8	5	13	

$$P(x = 7) = \frac{{}_{7}C_{7 \cdot 6}C_{1}}{{}_{13}C_{8}}$$
$$= \frac{6}{1287} = .0047$$

	Treatment	Control	Total	
O+	6	1	7	$P(x=6) = \frac{{}_{7}C_{6\cdot 6}C_{2}}{C}$
О-	2	4	6	=.0816
Total	8	5	13	

	Treatment	Control	Total	
O+	5	2	7	
О-	3 3		6	
Total	8	5	13	

$$P(x=5) = \frac{{}_{7}C_{5\cdot 6}C_{3}}{{}_{13}C_{8}}$$
$$= .3262$$

	Treatment	Control	Total	
O+	4	3	7	
O-	4	2	6	
Total	8	5	13	

$$P(x=4) = \frac{{}_{7}C_{4 \cdot 6}C_{4}}{{}_{13}C_{8}}$$
$$= .4070$$

	Treatment	Control	Total	
O+	3	4	7	$P(x=3) = \frac{{}_{7}C_{3\cdot_{6}}C_{5}}{C}$
O-	5	1	6	-1632
Total	8	5	13	1052
	Treatment	Control	Total	
O+	2	5	7	$P(x=2) = \frac{{}_{7}C_{2 \cdot 6}C_{6}}{C}$
O-	6	0	6	=.0163
Total	8	5	13	

*A useful check is that all the probabilities should sum to one (within the limits of rounding)

Hypothesis

- $H_O: \pi_T = \pi_C$ (no difference between treatment & control group)
- H_A : $\pi_T > \pi_C$ (1-tailed)

or,

 H_A : $\pi_T \neq \pi_C$ (2-tailed)

Calculate P value

- The observed set has a probability of 0.0816
- The P value is the probability of getting the observed set, or one more extreme.

One tailed P value:

 $P(x \ge 6) = P(x=6) + P(x=7) = 0.0816 + 0.0047 = 0.0863$

Calculate P value

Two tailed P value:

(1) $P(x \ge 6 \text{ or } x \le 2) = P(x = 2) + P(x = 6) + P(x = 7) = 0.0816 + 0.0047 + 0.0163 = 0.1026$

(2) Double the one tailed result*, thus: P= 2x0.0863 = 0.1726

*approximation